
Learning How Best to Summar ize

Terry COPECK , Stan SZPAKOWICZ, Nathalie JAPKOWICZ
School of Information Technology & Engineering

University of Ottawa
800 King Edward, P.O. Box 450 Stn. A

Ottawa, Ontario, Canada K1N 6N5
{ t er r y, szpak, nat } @si t e. uot t awa. ca

Abstract

We present a summarizer that uses
alternative modules to perform its key tasks.
Such a configurable summarizer benefits
from machine learning techniques that help
discover which configuration performs best
for documents in general or for those
characterized by particular lexical features.
We determine the quality of an
automatically generated summary by
computing a measure of its coverage of the
content phrases in a model summary known
to be of good quality. Machine learning
demonstrates significant improvement in
this measure over the average value of
summaries produced from all configuration
parameter settings.

We perform text summarization by extracting the
most representative sentences from a single
document. Such summaries tend to be informative,
rather than indicative; and generic, rather than
biased towards the interests or purposes of any
reader. This is how we situate our work in the
gradually emerging classification of summary
types which was recently recapitulated in Kan,
Klavans and McKeown (2002).

1 System Design

Our work on summarization began several years
ago in the context of a larger project with multiple
objectives, in which summary generation would be
one of the tools. We therefore came to this task for

practical reasons and with few hypotheses in play.
From the outset it was clear that the approach we
envisioned could be implemented in large part by
combining existing NLP research software which
were either in the public domain or freely
available from their authors. It suited our purposes
not to reinvent any more wheels than really
necessary. It also seemed a good idea to use
software which is known to the NLP research
community and has already been subject to its
scrutiny. We therefore conceived of our
summarization system as a testbed in which we
could evaluate how well alternative black boxes
developed by others cooperate as they perform one
of the key tasks involved in our method of
summarization. The rationale inherent in this
architecture has itself in due course provided a
research agenda.

We assumed that a summary composed of
neighboring, thematically-related sentences should
read better, and perhaps also convey more
information, than one in which each sentence is
independently chosen from the document as a
whole and thus likely bears no relation to its
neighbours. This assumption led to a process in
which the text to be summarized is first broken
into segments, which are sequences of adjacent
sentences talking about the same topic. In a
separate operation keyphrases are extracted from
the whole text and ranked. Each sentence in the
text is then rated according to the number of
highly-ranked keyphrases which it contains, and
each segment is ranked according to the ratings of

the sentences which it contains. The summary is
then constructed by picking sentences from those
that exceed a threshold count of keyphrases in the
most highly ranked segments, moving from the
best segment to the next best until the required
number of sentences have been accumulated.
These sentences are put in document order and
presented to the user as a summary of the
document.

2 Processing

Because our summarizer was at first designed to
be a functional component of a larger project, it
was necessary to handle real world texts which,
although coded in plain ASCII, may have a variety

of extraneous formatting: pagination, embedded
figures and tables and, most crucially, columnar
format. Although it took some effort to install the
black boxes in wrappers that brought them to a
common interface, most of our attention was spent
on translating input text to the "NLP normal" form
— one sentence per line, one extra line between
paragraphs — required by most of the black
boxes. This form is also made necessary by the
task itself; sentence extraction presumes a text in
which sentences are identified correctly.
Recognizing sentence and paragraph boundaries
and extraneous material such as tables interpolated
into the flow of text are legitimate research issues
in themselves. They are, however, not inherently

Figure 1. Summar izer Program Architecture

 Keyphrase
 Extraction

 Matching

Kea Extractor NPSeek

Exact Stem

 Sentence
 Selection

Locality

 Segmenting

Text

TextTiling C99 Segmenter None

Summary

part of summarization, so we will not discuss them
further here.

In the course of processing of input text prior to
summarization we create a data model of the
document which records its various lexical
features on a per-sentence basis as well as details
of sentence and paragraph order. This record is the
basis for the document characterization which
plays a role in summary evaluation discussed in
Section 4.

The key tasks for which we used alternative
external programs are document segmentation,
keyphrase extraction, and phrase matching. The
Columbia University Segmenter (Kan, Klavans
and McKeown 1998), Hearst's TextTiling program
(1997) and the C99 program (Choi 2000) were
used to divide a document into segments. A fourth
option implemented recently turns off
segmentation and treats the document as a single
segment. A moment’s thought may show that this
is the control case for our hypothesis about the
benefit of locality in sentence selection; picking
the highest-rated sentences from the entire text
defeats locality. To extract keyphrases we used
Waikato University's Kea (Witten, Paynter, Frank,
Gutwin and Nevill-Manning 1999), the Extractor
program from the Canadian NRC's Institute for
Information Technology (Turney 2000), and
NPSeek, a program developed at the University of
Ottawa (Barker and Cornacchia 2000). The Kea
program suite also provided modules to match
phrases exactly and in stemmed form. Figure 1
shows the architecture of the summarization
program constructed around these black boxes
(stemmed matching is dimmed deliberately).

3 Operational Parameters

To run, our program must be told which black box
to use for each of the three key tasks where we
have choice. Three other aspects of the process or
the task have been judged important enough to
require parametrization: 1) the size of the
summary in sentences, words, or as a proportion of
the document; 2) the number of keyphrases to use
in rating sentences and segments; 3) the threshold

number of keyphrase matches needed for a
sentence to qualify as a candidate for a summary.
There are 24 unique specifications for black boxes
alone; each of the three additional parameters
takes a count rather than an enumerated value, so
it is quite feasible to produce hundreds if not
thousands of summaries for a single document.

This is computationally expensive. Results
from DUC 2001 led us to shrink this space by
dispensing with stemmed matching (which for this
reason is shown dimmed in Figure 1), fixing the
keyphrase threshold at two and limiting the range
of the other two count parameters, summary size
and number of keyphrases.

4 Evaluation

How good are any of these summaries? Answering
that question has proven to be quite difficult
(Goldstein, Kantrowitz, Mittal and Carbonell
1999), and it is currently the object of quite intense
research interest, of which the two Document
Understanding Conferences (DUC) sponsored by
NIST are notable examples. Summary evaluation
has become a research goal in itself.

A variety of statistical measures of summary
content — kappa, relative utility, and the
traditional IR metrics of precision and recall — are
computed in systems like the MEAD Eval toolkit
(Radev, Teufel, Lam and Saggion 2002) or SEE
(Lin 2001) that automate or assist the assessment
of summaries against the original texts on which
they are based. We have, however, chosen to
compare our summaries against the gold standard
of ones written by human authors. Such
summaries are not easily come by. We had
therefore initially settled on academic papers1 as a
subject genre and have adopted the authors’
abstracts which begin such papers as a practical
approximation to the gold standard summary we
seek, an approach proposed by Mittal, Kantrowitz,
Goldstein and Carbonell (1999). Who better than
the author knows the intended content of a paper?

1 Initially we used a one-million-word corpus of 75
academic papers published between 1993-1996 in the
online Journal of Artificial Intelligence Research.

We use a variant of the keyphrase extraction
technique used in the summarization program to
evaluate a summary against the reference
summary. That gold standard is broken down into
a set of unique content keyphrases by processing it
against a stoplist of 980 closed-class and common
words. The resulting keyphrases in abstract
(KPiAs) differ from those used to produce the
summary under evaluation in that they compose a
comprehensive description of the abstract rather
than being limited to a small number of the most
highly ranked ones.

A summary is ranked according to the degree
to which it covers the set of KPiAs. Its score is
computed using the following formula:

� 1.0 * KPiAunique + 0.5 * KPiAduplicate

The formula computes a total for the sentence,
assigning a weight of 1.0 to each KPiA which is

added to the coverage set and 0.5 to each that
repeats a KPiA which is already in the set.

5 Learning

The combination of a wholly automated evaluation
technique and a large number of instances to
which to apply this technique is a textbook
application for machine learning. Accordingly, we
embedded the summarization program in a
framework which automates its operation and the
evaluation of its results and then applies the C5.0
decision tree and rule classifier (Quinlan 2002) to
infer rules about which parameter settings produce
highly-rated or poorly-rated summaries. This
architecture appears in Figure 2. To permit
comparisons between documents, each summary
KPiA rating is normalized by dividing it by the
total count of unique KPiAs found in the same
number of sentences ranked highest in the

Figure 2. Text Summar ization Learner Architecture

Parameter
Assessor

Discretized,
Normalized

Rating

Best Parameters Text to be
Summarized

Summary + Parameter Values

Future Feedback Loop

Parameter
Values

SUMMARY GENERATOR GENERATION CONTROLLER

Abstract + Features

Summary
Assessor

document on KPiA count. This establishes the
highest possible rating for a summary of a given
size. The set of ratings for summaries of all
documents is then discretized into the five values2
verybad, bad, medium, good, verygood using
MacQueen’s (1967) k-means clustering technique.
C5.0 then induces rules based on these ratings and
parameter values. Much of the learner’s operation
has been automated, most recently the
identification of best parameters in the C5.0 output
and the application of k-means clustering, and the
job of completely automating operation of the
system is under way.

Although our first experiments involved a data
vector containing only the settings of the six
parameters that regulate the production of
summaries, availability of the document data
model soon led us to add the features listed in
Table 1 in order to characterize the document
being summarized. These features are all counts:
the number of characters, words, sentences and
paragraphs in the document; and the number of
other syntactic elements, such as KPiAs,
connectives and proper nouns. We also count
content phrases (substrings between stoplist
entries), bigrams (word pairs) and content
bigrams. We record how many of these latter three
primitive lexical items occur once, twice, three
times, or more than three times in the document.

2 C5.0 requires a discrete outcome variable. The use of
five values was determined heuristically.

Adding features has the effect of asking C5.0 to
discover rules identifying which parameter values
produce good summaries for documents with
certain features, rather than for documents in
general. Further active investigation over the last
year has not yet identified additional features
which might be used effectively to characterize
documents.

Our experiments clearly show the benefit of
machine learning. Choosing parameter values
randomly produces an average rating of 2.79, the
medium value that is to be expected from a
population of values that have been normalized.
When the best parameter settings for each text are
chosen, however, the average rating increases two
full grades to 4.78 or verygood.

6 Document Understanding Conference

We participated in the Document Understanding
Conferences in 2001 (Copeck, Japkowicz and
Szpakowicz 2002) and 2002. In DUC, NIST first
provides participants with a corpus of training
documents together with abstracts written by
skilled editors, and then a set of similar test
documents which each participant is to summarize
in a manner consistent with that inferred from the
training set. Our participation involved slight
modification to our learning system. Rather than
constructing rules that relate features and
parameters to KPiA ratings, C5.0 used the training
data to build a classification tree recording these

FEATURE DESCRIPTION FEATURE DESCRIPTION

chars number of characters in the document cphr3 number of 3-instance content phrases

words number of words in the document cphr4 number of 4-or-more instance content phrases

sents number of sentences in the document cbig number of 1-instance content bigrams

paras number of paragraphs in the document cbig2 number of 2-instance content bigrams

kpiacnt number of kpia instances cbig3 number of 3-instance content bigrams

conncnt number of (Marcu) connectives cbig4 number of 4-or-more instance content bigrams

pncnt number of PNs, acronyms abig number of 1-instance bigrams

contcnt number of content phrases abig2 number of 2-instance bigrams

cphr number of 1-instance content phrases abig3 number of 3-instance bigrams

cphr2 number of 2-instance content phrases abig4 number of 4-or-more instance bigrams

Table 1. Document Features

same relationships. The test data, which is
composed of document features only, was then
classified against this structure and the parameters
that gave the best summary for the training
document most similar to each test document were
used to produce the summaries submitted to the
conference. Figure 3 depicts the process.

Ten-fold cross validation on the training data
shows 16.3% classification error (std. dev. .01).
The 5x5 confusion matrix further indicates that
80% of misclassifications were to the adjacent
value in the scale. This suggests that the rules are
reasonably trustworthy. The test run showed that
they are productive, and that the ratings they seek
to maximize are well-founded.

For DUC 2002 we added adaptive boosting
(Freund and Schapire 1996) to the learning
process. Adaptive boosting, or ADABOOST,
improves the classification process by iteratively
generating a number of classifiers from the data,
each optimized to classify correctly the cases most
obviously misclassified on the previous pass. The
votes of a population of these classifiers generally
provide better outcomes than do the decisions of
any single classifier.

NIST provides participants with a full suite of
submissions and analysis material after each event
as an invitation to get involved in judging results.
We used the human summaries of the 2001 test
documents to augment training data for 2002 from
308 to 590 documents. Our own evaluation of our
results for 2001 varied from that computed by Paul

Over (2001) for no obvious reason, so we held
back from reporting results for DUC 2002 at the
July workshop on automatic summarization
occurring in conjunction with ACL-02. In 2001 we
did well on single document extractive summaries
and worse than average on multi-document
summaries. Because our technique is not
particularly suited to summarize more than one
document at a time, and because we are not
entirely comfortable with the notion of
incorporating material from more than one
document in a single summary, we chose to
participate only in the single document track in
2002.

In DUC 2002 our submission ranked somewhat
below the middle of the pack of 13 contributors in
the single document track. This is lower than our
performance the previous year, though ranking
alone is not a clear indication of relative decrease
in performance.

A measure used both in the training phase and
the test phase offers insights into the state of the
overall process. We compute the discretized KPiA
rating for all summaries of documents in the
training set. We also infer from the classification
tree a KPiA rating for each summary of every
document in the test set. Distribution of the five
rating values across any set of summaries
establishes the limits of the range of possible
outcomes. A comparison of KPiA distributions for
DUC 2001 with their counterparts for DUC 2002
appears in Table 2. Rows show the percentage of

Test

 TSL SYSTEM

 TSL SYSTEM

Training
Data

Submission

GENERATOR

Test Induced Rules
�, �, �, � Parameter Settings

� � � �

Figure 3. M ethodology for DUC 2002

summaries rated, or inferred to be, in the indicated
class. Each column concludes with the average
rating for all its summaries. In 2001 test and
training data were similar, and machine learning,
indicated by the gray arrow, was able to find
settings for each test document that produced at
least a good summary.

Contrast this with the situation in 2002. The
training data ratings are akin to those for the 2001
data, but ratings of the test data are widely at
variance with those of the three other document
collections. Fully 80% of the summaries of the test
data collection are inferred to be verybad. Despite
machine learning outperforming its counterpart in
2001, there were simply no well-rated summaries
that could be produced for approximately 22% of
the 2002 test documents. This situation almost
guaranteed the low evaluation produced by the
NIST judges.

The most obvious explanation for these
circumstances would be an inconsistency between
the 2002 training and test data. Our system would
exhibit this in the values it computes for the 19
features used to model each document for machine
learning. However, despite the presence of outliers
in each set of documents—texts much longer or
shorter than the average—inspection shows that
the distribution of each feature in one collection
resembles its counterpart in the other to a far
greater degree than do the two problematic KPiA
rating distributions. In addition, where individual
features of a document are related to one another,

distributions in the two collections also differ in
consistent ways. In sum, the test and training
collections appear to resemble one another to the
degree one would expect.

We have therefore ruled out the most obvious
explanation for our results. Although we have not
yet been able to find a reason why our 2002
training summaries had such low ratings, we
continue to investigate.

7 Conclusions and Future Work

We intend in future:

• to complete automating the operation of the
entire text summarization learning system;

• to continue to look for lexical features which
describe documents effectively. In this regard
commercial keyphrasers identify entities as
place, city, state and country; company,
organization and group; day and year; percent
and measure; person; and property. Some of
these may merit recording;

• to investigate the SEE and MEADEval
summarization evaluators;

• to merge the output sets of two or all three
keyphrasers, providing new alternatives. To
what degree do the keyphrasers agree in their
selections? How would merging sets of
keyphrases be accomplished? What effect
would use of a merged set have on summary
output?

 2 0 0 1
 2 0 0 2

RATING TRAIN TEST SUB TRAIN TEST SUB

verygood 11% 14% 79% 13% 15% 77%

good 12% 21% 21% 18% 1% 2%

medium 20% 19% 24% 3%

bad 18% 21% 26% 4% 12%

verybad 39% 25% 19% 80% 7%

AVERAGE 2.35 2.79 4.79 2.80 1.68 4.31

Table 2. KPiA Summary Rating Distr ibutions in DUC Corpora

+ 2.00 + 2.68

• to consider new techniques for sentence
selection, which may involve factors other
than keyphrase matching. For instance words
marking anaphora may make a sentence less
well suited to a summary;

• to continue looking to add new segmenters
and keyphrasers to our system.

• to investigate further the role of segmentation
and locality in text summarization.

Acknowledgements

This work has been supported by the Natural
Sciences and Engineering Research Council of
Canada and by our University.

References

Barker, K. and N. Cornacchia. 2000. Using Noun
Phrase Heads to Extract Document Keyphrases. Proc
13th Conf of the CSCSI, AI 2000 (LNAI 1822).
Montreal, 40-52.

Choi, F. 2000. Advances in domain independent linear
text segmentation. Proc ANLP/NAACL-00, 26-33.

Copeck, T., N. Japkowicz and S. Szpakowicz. 2002.
Text Summarization as Controlled Search. Proc 15th
Conf of the CSCSI, AI 2002 (LNAI 2338), Calgary,
268-280.

Freund, Y., Shapire, R. 1996. Experiments with a new
boosting algorithm. Proc 13th ICML. Morgan
Kaufmann. 325-332.

Goldstein, J., M. Kantrowitz, V. Mittal, and J.
Carbonell. 1999. Summarizing Text Documents:
Sentence Selection and Evaluation Metrics. Proc
ACM/SIGIR-99, 121-128.

Hearst, M. 1997. TexTiling: Segmenting text into
multi-paragraph subtopic passages. Computational
Linguistics 23 (1), 33-64.

Kan, M.-Y., J. Klavans and K. McKeown. 1998. Linear
Segmentation and Segment Significance. Proc
WVLC-6, 197-205.

Kan, M.-Y., J. Klavans and K. McKeown. 2002. Using
the Annotated Bibliography as a Resource for
Indicative Summarization. Proc LREC 2002, Las
Palmas, Spain. 1746-1752.

Lin, C.-Y. 2001. SEE� Summary Evaluation Environ-
ment. www.isi.edu/~cyl/SEE/.

MacQueen, J. 1967. Some methods for classification
and analysis of multivariate observations. Proc Fifth
Berkeley Symposium on Mathematical statistics and
probability, (1), 281-297.

Mittal, V., M. Kantrowitz, J. Goldstein and J.
Carbonell. 1999. Selecting Text Spans for Document
Summaries: Heuristics and Metrics. Proc AAAI-99,
467-473.

Over, P. 2001. Introduction to DUC 2001: an Intrinsic
Evaluation of Generic News Text Summarization
Systems. www-nlpir.nist.gov/projects/duc/duc2001/
pauls_slides/duc2001.ppt.

Quinlan, J.R. 2002. C5.0: An Informal Tutorial.
www.rulequest.com/see5-unix.html.

Radev, D., S. Teufel, W. Lam and H. Saggion. 2002.
Automatic Summarization of Multiple Documents
(MEAD) Project. www.clsp.jhu.edu/ws2001/groups/
asmd/.

Turney, P. 2000. Learning algorithms for keyphrase
extraction. Information Retrieval, 2 (4), 303-336.

Witten, I.H., G. Paynter, E. Frank, C. Gutwin and C.
Nevill-Manning. 1999. KEA: Practical automatic
keyphrase extraction. Proc DL-99, 254-256.

